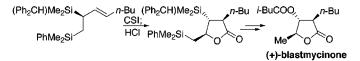
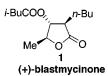
Stereoselective Synthesis of Substituted γ -Butyrolactones by the [3 + 2] Annulation of Allylic Silanes with Chlorosulfonyl Isocyanate: Enantioselective Total Synthesis of (+)-Blastmycinone

2001 Vol. 3, No. 5 675–678


ORGANIC LETTERS

Zhi-Hui Peng and K. A. Woerpel*

Department of Chemistry, University of California, Irvine, California 92697-2025 kwoerpel@uci.edu

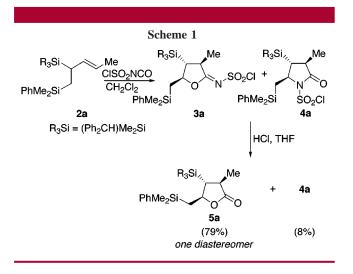

Received December 13, 2000

ABSTRACT

A stereoselective synthesis of γ -butyrolactones by the [3 + 2] annulation of allylic silanes with *N*-chlorosulfonyl isocyanate (CSI) was developed. An enantioselective total synthesis of (+)-blastmycinone was accomplished using this annulation as the key step.

The γ -butyrolactone skeleton represents an important core structure in many biologically active natural products.¹ Functionalized chiral γ -butyrolactones are also particularly useful synthetic building blocks.² Consequently, the development of new methods for the synthesis of γ -butyrolactones, particularly in a stereocontrolled fashion, has received considerable attention.^{2,3} Herein we report a method for the stereoselective construction of the γ -butyrolactone subunit by the [3 + 2] annulation reaction of substituted allylic silanes with *N*-chlorosulfonyl isocyanate (CISO₂NCO). An enantioselective synthesis of the polyketide metabolite (+)- blastmycinone (1) was achieved using this annulation to establish the configurations of the three contiguous stereocenters simultaneously.

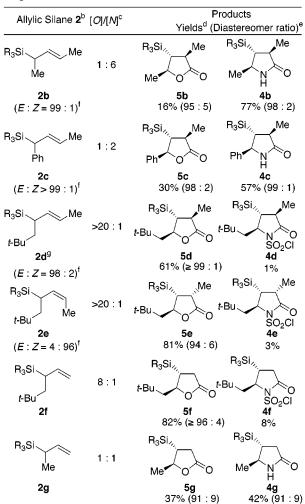
We recently developed a stereoselective route to substituted 2-pyrrolidinones by the [3 + 2] annulation reaction of allylic silanes with ClSO₂NCO.⁴ Our studies on this reaction showed that while annulation across the C=N bond of ClSO₂-NCO was usually favored, annulation across the C=O bond was found in one case as a minor product.^{4a} Previously, cycloadditions across both the C=N and C=O bonds were observed in cycloaddition reactions of ClSO₂NCO with unactivated alkenes.⁵


⁽¹⁾ Connolly, J. D.; Hill, R. A. *Dictionary of Terpenoids*; Chapman and Hall: London, 1991; Vol. 1, pp 476–541.

⁽²⁾ Koch, S. S. C.; Chamberlin, A. R. J. Org. Chem. 1993, 58, 2725-2737 and references therein.

⁽³⁾ For selected recent examples, see: (a) Zhang, Q.; Lu, X. J. Am. Chem. Soc. 2000, 122, 7604–7605. (b) Kiegiel, J.; Nowacki, J.; Tarnowska, A.; Stachurska, M.; Jurczak, J. Tetrahedron Lett. 2000, 41, 4003–4006. (c) Gagnier, S. V.; Larock, R. C. J. Org. Chem. 2000, 65, 1525–1529. (d) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 1999, 121, 11680–11683. (e) Chatani, N.; Tobisu, M.; Asaumi, T.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 1999, 121, 7160–7161. (f) Fukuzawa, S.-i.; Seki, K.; Tatsuzawa, M.; Mutoh, K. J. Am. Chem. Soc. 1997, 119, 1482–1483. (g) Harcken, C.; Brückner, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 2750–2752. (h) Brown, H. C.; Kulkarni, S. V.; Rachera, U. S. J. Org. Chem. 1994, 59, 365–369.

^{(4) (}a) Roberson, C. W.; Woerpel, K. A. J. Org. Chem. **1999**, 64, 1434–1435. (b) Nakamura also reported the preparation of γ-lactams from allylic silanes and ClSO₂NCO: Isaka, M.; Williard, P. G.; Nakamura, E. Bull. Chem. Soc. Jpn. **1999**, 72, 2115–2116.


In studies of the reactivity of α -silylmethyl-substituted allylic silanes such as $2a^6$ in the [3 + 2] annulation reactions,⁷ we made a surprising discovery. The reaction of 2a with ClSO₂NCO gave the *N*-chlorosulfonyl iminolactone 3a, the product of annulation across the C=O bond, as the major product. The hydrolysis of the unpurified intermediates afforded γ -lactone 5a in 79% yield,⁸ which could be easily separated from *N*-chlorosulfonyl lactam 4a (8% yield), the product of annulation across the C=N bond (Scheme 1).

Lactone **5a** and lactam **4a** were both formed as single diastereomers as determined by using ¹H NMR spectroscopic analysis, and the stereochemistry of **5a** was confirmed by X-ray crystallography.

A series of allylic silanes were synthesized to investigate the competition between annulation across the C=N and the C=O bonds in order to develop the reaction into a route to γ -butyrolactones (Table 1). First, reaction of ClSO₂NCO with allylic silane **2b**,⁶ which possessed an allylic benzhydryldimethylsilyl group, gave essentially the same result as our previous work with dimethylphenylsilyl allylic silanes.^{4a,9} This result indicated that the nature of silyl substituent does not control the outcome of the reaction. To eliminate cation stabilization by the terminal β -silyl group of **2a** as the cause for the preferential annulation across the C=O bond, the reaction of allylic silane **2c** was investigated. The stabilization offered by the phenyl group did not strongly influence the product ratio. These results showed that the electronic effects of the allylic silyl group and the α -substituent were not

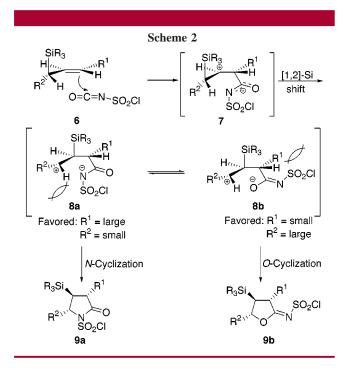
Table 1.	Annulation Reactions of Allylic Silanes with
CISO ₂ NC) ^a

^{*a*} A solution of allylic silane **2** in CH₂Cl₂ was treated with an excess of chlorosulfonyl isocyanate at 0 °C. After consumption of **2**, the unpurified intermediate was then treated with either 25% Na₂SO₃ in CH₂Cl₂ (**2b**, **2c**, **2g**) or 1 N HCl in THF (**2d**, **2e**, **2f**). ^{*b*} R₃Si = (Ph₂CH)Me₂Si. ^{*c*} The C=O and C=N annulation ratio was determined by ¹H NMR spectroscopy of the unpurified annulation intermediates. ^{*d*} Isolated yield of pure material. ^{*f*} Alkene ratios determined by GC analyses of the unpurified products. ^{*f*} Alkene ratios of the allylic silanes **2** determined by GC analyses. ^{*k*} Because significant amount of protodesilylation occurred for this substrate, the reaction was conducted at -50 °C with 10 mol % of proton scanvenger 2,6-di-*tert*-butyl-4-methylpyridine.

responsible for the observed preference for the C=O annulation path for silane 2a.

The steric size of the α -substituent of the allylic silane exerted a strong influence on the annulation. The C=O annulation pathway was strongly favored for (*E*)-crotysilane **2d**, (*Z*)-crotylsilane **2e**, and the terminal allylic silane **2f** with a large neopentyl group at the α -position. Consistent with the C=N annulation pathway,⁴ the C=O annulation pathway was also stereospecific and highly stereoselective. Terminal alkene **2g** also favored the C=O annulation pathway.^{4a} Apparently, steric effects exerted by the substituents in allylic silanes **2** play an important role in determining the outcome of the reaction.

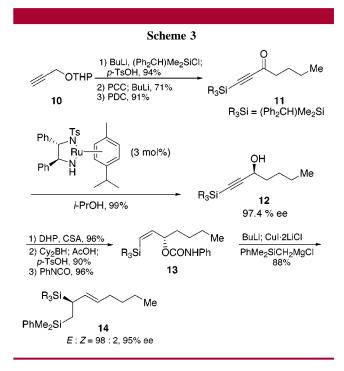
^{(5) (}a) Malpass, J. R.; Tweddle, N. J. J. Chem. Soc., Perkin Trans. 1 1977, 874–884. (b) Barends, R. J. P.; Speckamp, W. N.; Huisman, H. O. Tetrahedron Lett. 1970, 12, 5301–5304. (c) Dunkelblum, E. Tetrahedron Lett. 1972, 14, 1551–1554.


⁽⁶⁾ Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2000, 2, 1379-1381.

⁽⁷⁾ For leading references on the [3 + 2] annulation of allylic silanes, see: (a) Knölker, H.-J.; Foitzik, N.; Goesmann, H.; Graf, R. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 1081–1083. (b) Panek, J. S.; Yang, M. *J. Am. Chem. Soc.* **1991**, *113*, 9868–9870. (c) Akiyama, T.; Ishikawa, K.; Ozaki, S. *Chem. Lett.* **1994**, 627–630. (d) Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. *J. Org. Chem.* **1992**, *57*, 6094–6097.

⁽⁸⁾ The optimal solvent proved to be CH₂Cl₂. Temperature did not greatly affect the C=O to C=N annulation ratio.

⁽⁹⁾ Only the C=N annulation product lactam 4b was obtained if the annulation reaction was conducted in toluene, see ref 6.


The proposed mechanism of the annulation⁴ and the origin of the competition between C=N and C=O annulations are illustrated in Scheme 2. The electrophilic attack by chloro-

sulforyl isocyanate onto the allylic silane yields the β -silyl carbocation 7. A [1,2]-silvl migration provides the 1,3-dipolar intermediate 8, which can undergo cyclization on nitrogen through **8a** or cyclization on oxygen through its rotamer **8b**. A steric interaction between the α -substituent R^2 and the NSO₂Cl group destabilizes N-cyclization intermediate 8a. On the other hand, O-cyclization intermediate 8b suffers from steric repulsion between the terminal substituent R^1 and the NSO₂Cl group, which is trans to oxygen. Therefore, an allylic silane with a large R^2 group and a small R^1 group prefers the O-cyclization pathway, leading to lactone 9b. In contrast, an allylic silane with a small R^2 group and a large R^1 group favors the N-cyclization pathway to provide the lactam product. The dominant factor controlling lactone and lactam formation in the [3 + 2] annulation of allylic silanes with ClSO₂NCO is therefore the steric interactions of the substituents.10

To demonstrate the synthetic utility of the [3 + 2]annulation of allylic silanes with chlorosulfonyl isocyanate to form γ -butyrolactones, we synthesized (+)-blastmycinone with this reaction as the key step. (+)-Blastmycinone is a degradation product of the macrocyclic dilactone (+)antimycin A₃ (blastmycin), an antifungal antibiotic isolated from several members of the *Streptomyces* species.¹¹ A number of approaches have been developed to access this molecule and related γ -butyrolactone natural products.¹² Most of the efforts have focused on diastereoselectively and enantioselectively building the three contiguous stereogenic centers, mostly in a stepwise fashion. The [3 + 2] annulation reaction of allylic silanes provides an efficient way to access all three stereocenters in one key step with high enantioand diastereocontrol.

The enantioselective synthesis of (+)-blastmycinone started with the THP-protected propargyl alcohol **10** (Scheme 3).

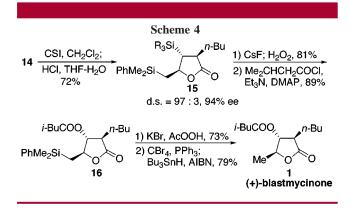
Silylation of **10** with benzhydryldimethylsilyl chloride⁶ followed by deprotection and oxidation of the resultant alcohol afforded an aldehyde, which was then treated with *n*-butyllithium and oxidized to give the acetylenic ketone **11**. Asymmetric transfer hydrogenation¹³ of **11** afforded the chiral alcohol (*R*)-**12** with high enantioselectivity (97.4% ee).¹⁴ The chiral alcohol **12** was then protected as the THP ether. Hydroboration, protonolysis, and deprotection afforded the (*Z*)-allylic alcohol, which was then treated with phenyl isocyanate to give the carbamate **13**. A copper-mediated S_N2' reaction¹⁵ provided chiral allylic silane **14** with high (*E*)-selectivity and enantioselectivity (95% ee).¹⁶

With the chiral allylic silane 14 in hand, subsequent [3 + 2] annulation and functionalization of the two silyl

⁽¹⁰⁾ A control experiment showed that no interconversion occurred between iminolactone 3a and N-chlorosulfonyl lactam 4a.
(11) (a) Yohehara, H.; Takeuchi, S. J. Antibiot. 1958, 11, 254–263. (b)

^{(11) (}a) Fonenara, H.; Fakeuchi, S. J. Antibiol. **1958**, 11, 254–265. (b) Kinoshita, M.; Aburaki, S.; Umezawa, S. J. Antibiot. **1972**, 25, 373–376.

⁽¹²⁾ For selected examples of the asymmetric synthesis of (+)-blastmycinone, see: (a) Chen, M.-J.; Lo, C.-Y.; Chin, C.-C.; Liu, R.-S. J. Org. Chem. 2000, 65, 6362–6367. (b) Sibi, M. P.; Lu, J.; Talbacka, C. L. J. Org. Chem. 1996, 61, 7848–7855. (c) Ishibashi, T.; Ochifuji, N.; Mori, M. Tetrahedron Lett. 1996, 37, 6165–6168. (d) Wasserman, H. H.; Gamble, R. J. Tetrahedron 1992, 48, 7059–7070.


^{(13) (}a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1997**, 119, 8738–8739. (b) Hashiguchi, S.; Fujii, A.; Haack, K.-J.; Matsumura, K.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. **1997**, 36, 288–290.

⁽¹⁴⁾ The enantiomeric excess of **12** was determined by GC analysis of its Mosher ester: Dale, J. A.; Dull, D. L.; Mosher, H. S. *J. Org. Chem.* **1969**, *34*, 2543–2549.

^{(15) (}a) Smitrovich, J. H.; Woerpel, K. A. J. Am. Chem. Soc. **1998**, *120*, 12998–12999. (b) Smitrovich, J. H.; Woerpel, K. A. J. Org. Chem. **2000**, *65*, 1601–1614.

⁽¹⁶⁾ The enantiomeric excess of **14** and **15** was determined by HPLC analysis using a Chiracel OD-H column, and the enantiomerically enriched material was compared with racemic material.

groups completed the total synthesis. The key [3 + 2] annulation of **14** with ClSO₂NCO proceeded with a C=O/C=N annulation ratio of ≥ 20 :1 as determined by ¹H NMR spectroscopic analysis. After hydrolysis with aqueous HCl in THF, γ -lactone **15** was obtained in 72% yield with a diastereomeric ratio of 97:3 and an ee of 94%¹⁶ (Scheme 4). This result demonstrated that the annulation occurred with

retention of enantiomeric purity.^{4,7b} The oxidation of the benzhydryldimethylsilyl group with CsF/H₂O₂ yielded the corresponding alcohol without epimerization.¹⁷ The resultant alcohol was then acylated with isovaleroyl chloride to afford **16**. Finally, oxidation of the terminal dimethylphenylsilyl group with KBr–AcOOH,¹⁸ followed by bromination and reduction of the resultant bromide, furnished (+)-blast-

mycinone 1. The spectral data of 1 are identical to those reported. $^{12\mathrm{b}}$

In summary, the [3 + 2] annulation reaction of allylic silanes with chlorosulfonyl isocyanate provides an efficient stereospecific and stereoselective synthesis of γ -butyrolactones. The synthetic utility of this method was demonstrated by a concise enantioselective synthesis of the γ -butyrolactone natural product (+)-blastmycinone.¹⁹

Acknowledgment. This research was supported by a CAREER Award from the National Science Foundation (CHE-9701622). K.A.W. thanks the American Cancer Society, AstraZeneca, Glaxo-Wellcome, the Camille and Henry Dreyfus Foundation, Merck, and the Research Corporation for awards to support research. Z.P. thanks Pharmacia & Upjohn for a graduate fellowship in synthetic organic chemistry. We thank Dr. John Greaves and Dr. John Mudd for mass spectrometric data and Dr. Joseph Ziller for X-ray crystallographic analyses.

Supporting Information Available: Full experimental and analytical data for all new compounds; X-ray data for **5a**; ¹H NMR and ¹³C NMR spectra of **5a**, **5d**, **5e**, **14**, **15**, and **1**; and GC and HPLC traces. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0069960

⁽¹⁷⁾ Brengel, G. P.; Meyers, A. I. J. Org. Chem. 1996, 61, 3230-3231.

^{(18) (}a) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. *J. Chem. Soc., Perkin Trans. 1* **1995**, 317–337. (b) Fleming, I.; Sanderson, P. E. J. *Tetrahedron Lett.* **1987**, 28, 4229–4232.

⁽¹⁹⁾ For the utilization of the [3 + 2] annulation of an allylic silane with ClSO₂NCO in the formal synthesis of a lactam natural product, see: Roberson, C. W.; Woerpel, K. A. *Org. Lett.* **2000**, *2*, 621–623.